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Abstract

The performance of three acoustic boundary condition
formulations is investigated. The effect of implementation

differences is also studied. Details of all implementations

are given. Results are shown for the acoustic field ofa mono-

pole in a uniform freestream.

Introduction

Accurate prediction of flow fluctuations representing

sound is the goal of Computational Aeroacoustics (CAA) (see,
for instance, Ref. 1). To do this, a grid is constructed which

covers the region of interest, and the discretized governing

equations are solved on this grid. The computational do-

main is usually finite, and boundary conditions must be

imposed at the edges of the grid. These boundary conditions
can generate spurious fluctuations that render the computed

solution entirely unacceptable.

Most of the classical boundary treatments used in com-

putational fluid dynamics are concerned only with the steady-
flow solution. Several suggestions for boundary conditions

for unsteady flows have recently been proposed. These

proposals can be classified in three categories: (I) quasi one-
dimensional characteristics, (II) decomposition of the solu-
tion into Fourier modes, and (HI) asymptotic analysis of the

governing equations for large distances.

The present work is concerned with evaluating these

types of boundary conditions by comparing the numerical
results obtained with various boundary conditions to a known

analytical solution. The effect of implementation of each

boundary condition on its performance is also investigated.

*Senior Research Associate, 1COMP;MemberAIAA.

**Senior Scientist and Leader, Computational Aeroacousticis; Associate
Fellow, AIAA.

Governing Equation,,;

The equations to be solved are the Linearized Euler Equa-

tions, which may be written in cylindrical coordinates as:

00 + 3_" + 1 a(rG) 1 aft
--3t _ r---_---r +-r--_-6.= S (I)

where:

(2)
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Here
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In the present code, the operator is split into separate
radial and axial contributions:

qn + 1= LrLxqn (11)

Each operator solves a portion of Eq. (1):

Lrq :

_+! _(r___2=_
Ot r 0r

Lxq:

aO a_

(12)

_=(y-1),[_-(fiU+_V+ ffW /

+ 215(U2 + V2+ W2)]

(7)

(8)

and

(_, fi, 9,*,8) : [p' ,(pu_ ,(pv)' ,(pw_¢, (pe)']. (9)

In this notation, U is the axial mean velocity, V is the
radial mean velocity, and W is the azimuthal mean velocity.

Numerical Scheme

The code is a modified split MacCormack solver, which
is second order accurate in time and fourth order accurate in

space. This extension of the MacCormack scheme is known
as the 2-4 scheme, and was developed by Gottleib and Turkel. 2
This scheme has been used successfully before by Farouk et.
al.3 and Ragab and Sheen 4 for studying nonlinear instability
problems in plane shear layers. Sankar, Reddy, and Hariharan 5

have evaluated this scheme for aeroacoustics applications.
The solution procedure is as follows:

Equation (1) may be rewritten in operator form as:

qn + 1 = Lrxqn (10)

In words, given the flow variables q at a time level 'n',

the code computes derivatives in both the radial and axial
directions and uses these quantities to advance the flow field
one time step, to the 'n+l' time level.

The operators are applied in a symmetric way to avoid
any numerical biasing of the solution:

qn + 2 = LxLrLrLxqn (13)

Each operator consists of a predictor and a corrector step.
Each step uses one-sided differencing:

Predictor:

l

n+-- At {7E n
q 2 =qn__.___ i_8Vi_ I +Fi_2) (14)

n+m

qn+l = qn +q 2

+ 6--_x(7Fi- 8Fi + 1 +Fi+ 2)n+21

Again, to avoid biasing, the sweep directions are reversed
between operators:

qn+2 -L r-+L -+qn (16)= Lx+ -Lr+ x

At the edges, flux quantities from outside the computa-
tional domain are required for the spatial differences. These
quantities are computed using third order accurate extrapo-
lations from the interior of the domain:

Fi+ 1 = 4Fi -6Fi_ 1 +4Fi_2-Fi_ 3 (17)



Mathcmatk:al Formolatio13 of Boundary_ Conditions and

The primary objective in CAA is to accurately compute

the oscillatory flow field. Since the computational domain is

finite, numerical boundary conditions must be imposed at

the grid boundaries. Improper specification of these bound-

ary conditions results in artificial disturbances which can ren-

der the computed oscillatory flow solution unacceptable. This

problem is most pronounced at subsonic outflows. As such,

outflow boundary conditions for subsonic flows have received

special attention and will be discussed herein.

Thompson (1987). Thompson 6'7 describes how to de-

compose hyperbolic equations into wave modes of definite

velocity and then how to specify boundary conditions for the

incoming waves. The starting point of Thompson's analysis
is the nonlinear Euler equations. The essence of his approach

is that one-dimensional characteristic analysis can be per-

formed by considering the transverse terms as a constant
source term. The 1-D characteristic analysis makes clear

which waves are propagating into and out of the computa-

tional domain. The amplitude of the outward propagating

waves are defined entirely from the variables inside the com-

putational domain, while the amplitude of the inward propa-

gating waves are specified as boundary conditions. For

nonreflective boundary conditions, the amplitude of the in-

ward propagating waves are set to zero.

To illustrate Thompson's approach, let us consider the

nonconservative axisymmetric Euler Equations written in

cylindrical coordinates:

Qt +AQr +BQx +C =0 (18)

where

(19)

v 0 0
A= 0 v ,

0 c2p

(20)

0 u 0
B=

0 u

c2p 0

(21)

,[ 0 vl
c =r 0 (22)

t-c2ovf

We first consider the radial boundary. The axial deriva-

tives are grouped with the source term to rewrite Eq. (18) as:

Qt + AQr + K = 0 (23)

Following Thompson's derivation, the matrix A is

diagonalized using similarity transformation. The eigen-

vectors are obtained by solving

det(A - 2'1) = 0, (24)

where I is the identity matrix. The left and right eigenvectors

of A are calculated using

liTA = 2'ili T

Ari = _'i ri (25)

liTr j =rij

The matrix S is formed, where the columns of S are the

right eigenvectors ri, and the similarity transform is defined:

L 10 0 0

2'2 0 0

A=S-1AS=|_ 0 X,3 0
0 0 2,4

Applying this transform to Eq. (23) gives:

or

This leads back to

where:

S-IQt +AS-1Qr +S-IK = 0

S-1Qt +L+S-IK=0

Qt+SL+K=0

(26)

(27)

(28)

(29)



Li = 7_iliTQr

Inthiscase,theeigenvaluesare:

(30)

_'1 ----V--C

_'2 =v

L3=v

_4 =V+C

(31)

and the left eigenvectors are:

{°t fi}{°1= ,,= /ojii -_c = '13 = '14 =
(32)

Eigenvalues I and 4 are the velocities of sound waves mov-

ing in the negative and positive radial direction; eigenvalue

2 is the velocity for entropy advection; and eigenvalue 3

is the velocity at which vorticity is advected in the radial
direction.

Evaluating Eq. (30) gives

L 1 = (v-c)(P r - pCVr)

L 3 = (v)(Ur)

t 4 = (v+c)(Pr +0CVr)

(33)

Eq. (28) may be written as:

Solving (34) for the time derivatives, we

Pt - pcvt = -LI - K4 + pcK3 = R1

c2pt - Pt = -L2 - C2Kl + K4 = R2

u t = -L 3 - K 2 = R 3

Pt + pcvt = -L4 - K4 - pcK3 = R4

(34)

obtain

pt=_2(R2 + I R +2( I R4) 1

u t = R 3

I R

I R

(35)

To apply the nonreflective Thompson boundary condi-

tions, it is necessary to determine which waves (LI-L 4) are
incoming or outgoing. For example, if the boundary in ques-

tion is the outer radial boundary, and the flow in the radial

direction is outgoing and subsonic, then the L l wave is in-

coming (velocity = v-c <0) and the L2-L 4 waves are all out-
going.

At this point, the amplitude of the incoming waves are set to

zero, giving the boundary condition:

L 1 =0

L2 = (v)(C20r-Pr)

L 3 = (v)(Ur)

+

(36)

and the time derivatives for the boundary points are calcu-

lated using Eq. (35).

The boundary conditions for the axial direction are

obtained in a similar manner. After _ouping the radial de-

rivatives with the source term, Eq. (18) becomes

Qt + BQx + N = 0 (37)

The eigenvalues and eigenvectors of B are computed,

and a new similarity transform is defined:

It I 0 0 0 ]

0 122 0 0
I_I=T-IBT= 0 0 123 0

0 0 0 124

(38)

This time, the eigenvalues are:



]d1= U-C

122=U

123 =U

124 =U+C

(39)

denoted by ', superimposed on a constant mean flow U, V.

The axisymmctric LEE can be written as:

Q'! +AQ' r +BQ' x +C = 0 (44)

where

and the left eigenvectors are:

[itcfci)Ill°m,-- m4--,0,

In the axial direction, Eq. (33) become

M 1 = (u-c)(P x -pCUx)

M2 = (u)(C2px-Px)

M 3 = (u)(Vx)

M 4 = (u+cXP x + pCUx)

(41)

and Eq. (37) may be rewritten as:

Pt - pcut = -MI - N4 + pcN2 = El

c2pt-Pt =-M2-c2N1 +N4 =E2

v t = -M 3 - N 3 = E 3

Pt +pcut = -M4 -N4 -pcN2 = E4

(42)

The boundary conditions are evaluated as before, and

the time derivatives are computing using:

1 Eut-- (4-El)
v t -- E 3

Pt =2(El +E4)

(43)

Giles (1990)

Giles 8 derived boundary conditions based on Fourier

analysis of the linearized Euler equations (LEE). Consider

the unsteady part of the flow to be small disturbances,

f°']U'

Q = v'

p'

(45)

[v°ij0 V 0 I0
A= 0 0 V

0 0 _2_

(46)

B= 0 U 0

0 0 U

0 _2_ 0

(47)

and

C'- r 0
(48)

An overbar denotes a mean flow quantity.

Consider the disturbance to be in the wave form:

Q' (x, r,t) = qRei(kx + Ir - tot) (49)

where qR is a constant vector. Giles' basic idea is that the

dispersion relation for the above linear equation can be modi-
fied to prohibit propagation for waves with group velocities

directed into the computational domain. This dispersion re-

lation is nonlinear, which implies that the boundary condi-

tion must be a nonlocal one to satisfy this condition exactly.

To produce local boundary conditions, the dispersion

relation is expanded in a Taylor series around the one-
dimensional solution. Boundary conditions for various de-

grees of approximation can thus be constructed.

In the axial direction, the characteristic variables are

defined as:



r1=p'-_u'

r2 =p,__2p,

r3 = p' +_u'

r4 = _,,'

(50)

For a subsonic outflow condition (x=b), the r I charac-

teristic is obtained using the Giles analysis; all others are
obtained from the inner solution. The second-order Giles

outflow condition is:

ar1 (ar4
(51)

For a subsonic inflow condition (x=a), the fourth-order

Giles boundary condition becomes:

2  r20r. ?rn+r__,)- Or
...__=_V.__..._..t : U)[_ Or r ) V_r

(52)

br4_ (0r4 q'_ (_+U) Or3 (_-U)arl

a'-'t"- -V[--_-r + -r--J 2 Or 2 Or

Likewise, for an inflow at an outer radial boundary

(r=rmax), the characteristic variables are:

c1 = p'-_Ev'

c2 = p, __.2p,

c 3 = p' +_v'

c 4 = _u'

(53)

The subsonic inflow condition becomes:

0c____L= (_- v) _4 u Ocl
Ot 2 c3x Ox

Oc2 = -U ac2
0t 0x

Oc___4=_uOc4_(_+v)_c 3 (_-v) Oc1
0t Ox 2 Ox 2 Ox

(54)

Eulcr Equations with constant mean flow in the x-direction:

u't +UU'x +pP'x = 0

1

v't +UV'x +pP'r =0

Vrlp't+UP'x u'× +V'r+ =0

(55)

The above system of equations can be reduced to the

convective wave equation for the pressure. For an outgoing

wave solution at large distances, the boundary condition can
be stated as:

1 p'
+--=0

V(0) p't +p'R R
(56)

where

R=_x2+r 2
(57)

and

U
M = _ (58)

The above form of the pressure boundary condition was

obtained by Tam and Webb, but one can show that it is iden-

tical to the pressure condition obtained by Bayliss and Turkel
and others.

However, Tam and Webb performed a rational asymp-

totic analysis for the full set of Euler equations. They showed

that while the asymptotic pressure is only acoustic in nature,
the velocity and density fluctuations contain both hydrody-

namic and acoustic contributions. Using this, they arrived at

a complete set of outflow boundary conditions which can be
written in the form:

fit = -Up' x +-_-(p' t +Up' x) (59)

Tam and Webb (1993)

Tam and Webb, 9 Bayliss and Turk¢l, lo Hagstrom and

Hariharan 11, and Enquest and Majda 12 considered boundary

conditions based on an asymptotic analysis of the Linearized

_lp,
u't=-Uu'x _ x (60)



1
v' t = -UV'x --=P' r (61)

P

p't =-V(0) p'x +_-p r + (62)

This boundary condition is applied at the outflow bound-

ary; at the inflow boundaries, acoustic radiation boundary

conditions may be used:

U
M=--

13= _]1- M 2

D= _/x 2 +(_r) 2

D- Mx

x=t- 7

(69)

where:

-V(0)[x , r _, Q'-]Q't = _-Q x +_-_ r +--ff-J (63)

Q' = (64)

lP'J

Test Problem

The test problem studied was that of a monopole in a

uniform flow in the axial direction. The analytic solution is:

For the described computations,

0.} --._ m

2

S = .01

M = 0.5

(7O)

The computational grid starts at r = 0.5 and ends at r=-24.5

in the radial direction. In the axial direction, the grid covers

from -12 < x < 12. The grid has 300 x 300 points, and is not

stretched in either direction. Tests were also performed with
a finer grid of 450 x 450 points; while the overall errors de-

creased, the relative performances of the boundary condi-
tions were the same.

 x)l[(,+ M2_T
p (x,r,t)= 4nD [_ o cos(0._)

Ux sin(c0x)
D 2

(65)

The point source is located at the origin. The analytic
solution is specified as the initial conditions, and a CFL of

0.5 is used. With no mean flow, this gives 25 points per
wavelength, and 191 time steps per cycle of oscillation.

For all computations, the analytic solution was speci-
fied at the inner radial boundary. The upstream axial bound-

ary and the outer radial boundary were both treated as inflow

boundaries, while the downstream axial boundary was treated

as an outflow boundary.

u' (x, r, t) = 4-_'_'_D[15-2-_'_(M - D)CO cos(otto)

Sr [co 132v' (x,r,t) = - 4n--_D ccoS(0rt)----_-sin(ort)

p' (x,r, t) = p'(x,r,t)
E2

where:

(66)

(67)

(68)

Implementation of Boundary. Conditions

Thompson

The Thompson boundary condition was implemented in
four ways: two were second-order accurate in time, while

the remaining two were first order accurate in time. The

axial outflow boundary will be used to illustrate the various

implementations of the Thompson boundary condition.

Due to the split operators used by the code, the imple-

mentation of the Thompson boundary conditions was greatly

simplified. The axial operator used by the code is defined by
Eq. (12) as:

-fit = o (7D



Thus, Eq. (37) becomes:

Qt +BQx = 0 (72)

since the radial derivatives and the source term do not ap-

pear in the axial operator. Using these definitions, Eq. (42)
is rewritten as:

Pt -pcut =-M1 =U!

c2pt -Pt =-M2 =U2

v t =-M 3 = U 3

Pt + pcut = -M4 = U4

(73)

Using Eq. (73), the amplitude of the characteristic waves

UI-U 4 can be computed using either time or space
derivatives. '

At the comers, the boundary conditions for both grid

faces are applied.

Thompson _plit/time (Th20. The first implementation
of the Thompson boundary condition used the time deriva-

tives to compute the amplitudes of the characteristic waves.
To preserve the code's second-order time accuracy, the bound-

ary conditions were applied at the end of both the predictor

and corrector sweeps in each direction.

Thompson split/space (Th2_). This variant used the spa-

tial derivatives to compute the amplitude of the characteris-

tic waves. The spatial derivatives were computed in the same

manner as shown in Eq. (14) and (15), using extrapolation

when required. Note that the derivatives are computed using

the primitive variables, not the conserved quantities. Again,
the boundary conditions are applied at the end of the predic-

tor and corrector sweeps in each direction.

Thompson/space (Th 1s). This version also used the spa-

tial derivatives to compute the amplitude of the characteris-
tic waves. This time, however, the boundary conditions were

only applied at the end of the corrector sweep, using fourth-

order accurate one-sided differences to evaluate the spatial
derivatives at the old time level. First-order accurate time

derivatives are used to update the flow variables at the bound-
aries.

Thompson/time (Thlt). The time derivatives were used

to compute the amplitude of the characteristic waves. Again,
the boundary conditions were only applied at the end of the

corrector sweep, using first-order accurate time derivatives.

Giles

Two implementations of the Giles boundary conditions

were performed, the first was first-order accurate in time,
while the second was second-order accurate in time.

Gilcs (G I). In this version, the Giles boundary condi-

tion is implementcd at the end of each time step, after both

the radial and axial operators are applied. The spatial de-

rivatives are computed using fourth-order accurate one-sided
differences, with the flow variables from the old time level.

The time derivatives are computed using first-order back-
ward differences.

Giles split (G2). Next, the Giles boundary condition was

split into axial and radial operators. In this formulation, the

boundary conditions are applied at the end of each predictor

and corrector sweep, returning second order accuracy in time.

The splitting procedure for the inflow boundary is de-

scribed as an example of the methodology used. Eq. (50)

gives the characteristic variables:

rI = p'-_au'

r2 = p, __2p,

r3 = p' +_u'

r4 = _av'

(74)

The total Giles boundary condition for the axial inflow

is given by Eq. (52):

ar2=-Var2
at 3r

3r3 (a- U) (ar 4 r4 "1 ar 3

LW+rJ-Vx
at4 (a h r4"_ (_+u) ar3 (a-u) arL
3t =-VL-_-r +"7 j 2 ar 2 ar

(75)

Equation (75) is split into axial and radial operators, to

be applied during the axial and radial sweeps, respectively.

Since there are no axial derivatives, the boundary condition

that is applied during the axial sweep is:

ar2
_=0

at

ar3
_=0

at

_4= 0
at

(76)



Duringtheradialsweeps,theboundaryconditionis:

Or2 - V c3r2
0t Or

at 2 k. Or ar

Or4_ (Or,) r4_ (a+U) ar_ (a-u) aq

a'-'t- - -V('-_-r + rJ" 2 Or 2 Or

(77)

The spatial derivatives were calculated from the primi-
tive variables employing the differencing method used by

the inner code. Extrapolation of the primitive variables was

used when necessary.

The axial outflow and outer radial inflow boundary con-

ditions are formulated in a similar way.

Both Giles boundary condition formulations were un-

stable when applied to comer points. Since the performance

of the boundary conditions at the corner points wasn't a ma-

jor area of interest, the analytic solution was specified at the

comer points for these calculations. To ensure that this was

not causing errors of its own, a special comer treatment based
on rotated I-D characteristics was also tested; the performance

of the Giles boundary condition was insensitive to the choice
of comer treatments.

Tam and Webb

In their original implementation of this boundary condi-

tion, Tam and Webb used a 'boundary region' of two points

instead of one at each edge of the grid. No extrapolation was

used in computing the spatial derivatives; this required con-
structing stencils which only used variables at grid points in

the computational domain. This is described fully in Ref. 9.

To remain consistent, the Tam and Webb boundary condition

was coded using only one boundary point. For comparison,

a two point 'boundary region' variant was also tested; the

results are equivalent. Two implementations of the Tam and

Webb boundary conditions were performed.

Tam and Webb (TW 1). In this version, the Tam and Webb

boundary condition is implemented at the end of each time

step, after both the radial and axial operators are applied.

The spatial derivatives are computed using fourth-order ac-
curate one-sided differences, with the flow variables from

the old time level. The time derivatives are computed using
first-order backward differences.

Tam and Webb split (TW2). Next, the Tam and Webb

boundary condition was split into axial and radial operators.

In this formulation, the boundary conditions are applied dur-

ing each predictor and corrector sweep, retaining second or-

der accuracy in time. The spatial derivatives were calculated
9

from the primitive variables employing the differencing

method used by the inner code. Extrapolation of thc primi-

tive variables was performed when necessary.

Since the Tam and Webb outflow condition only cor-

rects the pressure, the original code is used to compute the

other flow variables. The pressure is computed using:

for the axial sweep, and:

Pt r (79)

for the radial sweep.

For the inflow conditions at the other boundaries, the radia-

tion boundary conditions are used. These are split as:

o,=v/0,[ Ox] ,,0,
for the axial sweep, and:

[ot (81)

for the radial sweep.

Q' is defined in Eq. (64).

Results

Four points were chosen in the acoustic field to evaluate

the various boundary conditions at. The first point (PI) was

located at (x,r) = (-8. I, 20.5). The second point (P2) was at

(8.1, 20.5). These points illustrate the effect of the boundary
conditions on the comers of the flowfield, where the waves

are not aligned with the boundaries. The third point (P3)
was located at (0, 20.5). With no mean flow, this point shows

the effectiveness of the radial boundary conditions when the

wave velocity is normal to the boundary. The fourth point

(P4) was located at (10.4, 2). With no mean flow, this point

shows the effectiveness of the axial boundary conditions when

the outgoing wave velocity is normal to the boundary. Also,
an axial line (LI) was defined at r = 12.5 to better illustrate

the effect of implementation differences on the performance

of the various boundary conditions. Figure 1 shows the

location of these points and lines in the flowfield.

At each point, the maximum amplitude of the pressure

during each cycle was computed and compared to the



analytic solution. The relative pressure error was used to com-
pare the results. It is defined as:

(Error)cycle = IPo'XLom o,e -IPm' l.o.,y c1
]Pmaxanalytic cyd_

(82)

Again, the inner radial boundary for all computations
was specified from the analytic solution.

No mean flow CM = 0.0)

Initially, the code was run for the case of a monopole in
a still medium. All quantities are identical to the mean flow
case with the exception of M = 0. While this is truly a radia-
tion boundary, it was specified as an outflow boundary when
using Thompson or Giles formulations.

Figure 2 shows the maximum pressure contours for the
exact solution.

Thompson. The Thompson boundary condition was the
easiest to implement, and was very robust. The only version
that proved unstable was the implementation which used fh'st-
order time derivatives to compute the characteristics (Th 1t).
This version was always unstable due to comer problems,
and was abandoned.

All three implementations were basically equivalent.
Figure 3 shows the maximum pressure contours for the Th4t
implementation. Figure 4 shows the performance of the vari-
ous implementations on the L1 line. Figure 5 shows the per-
formance of the Th4t implementation at the four test points.

P1 and P2 show the symmetry of the test case. The er-
rors are the highest at this point, with values of nearly 25%.
P3 returns the lowest error, with 3% relative pressure error.
At the lower corner, P4 shows 7% relative pressure error.

The difference in the P1 and P3 errors is due to the angle
of incidence of the acoustic waves impinging on the bound-
ary. When the wave velocity is normal to the boundary, the
Thompson boundary condition performs best, as shown by
the low errors at P3 and P4.

Giles. The Giles boundary condition was the next bound-
ary condition that was implemented. This condition was rela-
tively easy to implement; it was also the most complex of the
three due to its mixture of time and space derivatives of the
primitive variables. The Giles boundary condition was stable
everywhere except at the corners; since special treatments
for the corner points were not given, the analytic solution
was specified at the outer comer points.

There was little difference between the performance of

10

the G1 and G2 implementations of the Giles boundary con-
dition; Figure 6 shows the maximum pressure contours for
the G I implementation. Figure 7 shows their performance
on the LI line. Figure 8 shows the results from the GI ver-
sion at the four test points.

The Giles outflow boundary conditions also did not per-
form well for this test case, with relative pressure errors at
PI and P2 of nearly 30%. At P3, the error is 1I%; while at

P4, the error is less than 0.8%. The effect of the fully speci-
fied corner points on the far field error was not fully investi-
gated.

In other tests, a test case run in which the Giles inflow

boundary condition is used instead of the outflow boundary
condition gave much better results, with maximum errors of
less than 7%.

• _lJiad.__. The Tam and Webb outflow boundary
condition was the last formulation to be investigated. This
condition does not have a special comer treatment; the cor-
ners are computed just as the other boundary points are. The
Tam and Webb boundary condition was stable everywhere,
and relatively easy to code. Figure 9 shows the maximum
pressure contours for the TW2 implementation. The second
order implementation (TW2) was slightly better than the first
order implementation (TW1). This is illustrated in Figure
I0. Figure I1 shows the results of the TW2 run; errors at all
four test points were less than 2%.

Test runs were made using the radiation inflow bound-
ary condition; performance was equivalent to that of the TW2
outflow boundary condition.

Mean Flow (M = 0.5]

Figure 12 shows the maximum pressure contours for the
exact solution.

Thompson. All three implementations were all nearly
equivalent. The two second-order versions (Th2s and Th20

returned identical results, while the stable first-order imple-
mentation (This) was virtually indistinguishable. Figure 13
shows the maximum pressure contours for the Th2t imple-
mentation. Figure 14 shows the results on the L1 line from

the three implementations. Figure 15 shows the results of
the Th2t implementation at the four test points.

The Thompson inflow condition did not perform well.
For all three versions, relative pressure errors of 70% were
computed at PI. It was theorized that the low performance
of the inflow boundary condition in this case was due to the

errors caused by the outgoing acoustic wave velocities not
being normal to the boundary.

The outflow condition performed much better; at P2, the
relative pressure errors were below 20%. Here, the wave



velocities are nearly normal to the boundary.

The inflow condition specified at the outer radial bound-

ary (P3) resulted in relative pressure errors of 20-30%.

The Thompson boundary condition performed best at
P4; the velocity of the outgoing waves were nearly normal to

the boundary, and the proximity of the fully specified bound-

ary kept numerical noise to a minimum.

In general, the Thompson boundary condition was the

least accurate of the boundary conditions tested.

Giles. While the differences in the results were minor,

the second-order Giles implementation (G2) slightly outper-

formed the first-order (G1) version. Figure 16 shows the L1

results from the two implementations. Figure 17 shows the

results of the G2 run at the four test points. Figure 18 shows

the maximum pressure contours for the G2 run.

The Giles inflow condition worked very well, with
relative pressure errors below 3% at P1 and P3. At P4, the

proximity of the fully specified boundary kept the relative

pressure errors below 5%.

from a monopole placed in a stagnant or moving stream, but

with the boundary treatment as described by one of the afore-

mentioned approaches. For each boundary condition, vari-

ous implementations were tested to study the sensitivity of

their performance to the implementation procedure. In gen-

eral, slight improvement in the performance of each scheme

can be achieved via the implementation procedure.

With the best achieved performance for each boundary
treatment, the following conclusion can be drawn regarding

their comparative performance:

(A) For outflow boundary treatment, the only accept-

able performance was that of Tam and Webb. The perfor-

mance of the other schemes might be acceptable only in

special cases wherein the flow is nearly one-dimensional,
perpendicular to the boundary. But even under such condi-

tions, their performance did not surpass that of Tam and Webb.

(B) For inflow boundary treatment, Giles boundary con-

dition was acceptable, as well as the radiation boundary con-
dition of Tam and Webb applied to inflow treatment. The

Thompson inflow boundary treatment resulted in consider-

able reflection near the inflow boundary.

The Giles outflow condition did not perform as well as

the inflow condition, with the error at P2 nearly reaching
20%.

The Giles boundary condition is the second best of the
three formulations tested.
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Figure 1.---Computational domain.

Figure 2.--Maximun pressure contours for uniform flow about a monopole

(M = 0.0; analytical solution).
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Figure 3.--Maximum pressure contours for uniform flow about a monopole
(M = 0.0; Thompson 2nd order/time).
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Figure 4.--Uniform flow about a monopole (M = 0.0; Thompson).
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Figure 5.---Uniform flow about a monopole (M = 0,0; Thompson 2nd order/time}.
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Figure 6.--Maximum pressure contours for uniform flow about a monopole

(M = 0.0; Giles 1st order).
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Figure 7.---Uniform flow about a monopole (M = 0.0; Giles).
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Figure 8,--Uniform flow about a monopole (M = 0.0; Giles 1st order).
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Figure 9.--Maximum pressure contours for uniform flow about a monopole
(M = 0.0; Tam and Webb 2nd order).
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Figure lO._Uniform flow about a monopole (M = 0.0; Tam and Webb).

i

...................."jii_ii" "-r......÷...................

........... G_. d°................i.....................i................................................
f I 1....................i.....................i...... 1--_°'
f i il..... _ I
• ; i ;.........

15

16



4)

==

==
Q.

>=

10-1

10-3

10-5

101 ............

............................................................................. i ...................................................

............................................................................. i..................................................

i

....... ........i...................................................

__i _''''''_'"_'"_! :................. [L P°intl I i

-._.................i.........................._..........................i.....................i...................
! i i " ::

\ / i i i / _ Point 2 I
"'__ ....................... _.................1 _0-- Point 3 |-

i J--._-- Point4 I !! ! . .
..... I , , • • 1 ...... I • •

0 10 15 20 25

Cycles of oscillation

Figure 11.--Uniform flow about a monopole (M = 0.0; Tam 2nd order).

Figure 12.--Maximum pressure contours for uniform flow about a monopole
(M = 0.5; analytic solution).
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Figure 13.--Maximum pressure contours for uniform flow about a monopole

(M = 0.5; Thompson 2nd order/time).
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Figure 14._Uniform flow about a monopole (M = 0.5; Thompson).
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Figure 15._Uniform flow about a monopole (M = 0.5; Thompson 2nd order/time).

Figure 16.--Maximum pressure contours for uniform flow about a monopole

(M = 0.5; Giles 2nd order).
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Figure 19._Maximum pressure contours for uniform flow about a monople

(M = 0.5; Tam and Webb 2nd order).
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Figure 20.--Uniform flow about a monopole (M = 0.5; Tam and Webb).
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